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Abstract—The National Aeronautics and Space Administra-
tion (NASA) has developed a capacity approaching modulation
and coding scheme that comprises a serial concatenation of
an inner accumulate pulse-position modulation and an outer
convolutional code (or SCPPM) for deep space optical communi-
cations. Decoding of this code uses the turbo-principle. However,
due to the non-binary property of SCPPM, a straightforward
application of classical turbo decoding is very inefficient. Here,
we present various optimizations applicable in hardware imple-
mentation of the SCPPM decoder. More specifically, we feature
a Super Gamma computation to efficiently handle parallel trellis
edges, a pipeline-friendly “maxstar top 2” circuit that reduces the
max-only approximation penalty, a low-latency cyclic redundancy
check (CRC) circuit for window-based decoders, and a high-speed
algorithmic polynomial interleaver that leads to memory savings.
Using the featured optimizations, we implement a 6.72 mega-

bits-per-second (Mbps) SCPPM decoder on a single field-
programmable gate array (FPGA). Compared to the current
data rate of 256 Kbps from Mars, the SCPPM coded scheme
represents a throughput increase of more than twenty-six fold.
Extension to a 50 Mbps decoder on a board with multiple FPGAs
follows naturally. We show through hardware simulations that the
SCPPM coded system can operate within one dB of the Shannon
capacity at nominal operating conditions.

Index Terms—Optical communications, turbo decoding, cyclic
redundancy check, quadratic polynomial interleaver, FPGA im-
plementation.

I. INTRODUCTION
All of NASA’s current deep space missions communicate to

Earth using either the radio frequency (RF) spectrum. However
the RF spectrum contains much congestion and is susceptible
to high diffraction loss due to the spreading of their beam
widths. For example, if we use a transmit antenna that is 3.7
meters in diameter (such as one that is mounted on Voyager)
and a frequency in X-band to communicate between Earth
and Saturn, this transmission beam will spread out to an
area over 1000 Earth-diameters wide due to diffraction. We
can contrast this result with a system that employs optical
communications. If we use a small 10 centimeter optical
telescope with wavelength of 1 µm to communicate data
between the same Earth-Saturn distance instead, the resulting
spot size will only be one Earth-diameter wide. This represents
a factor of 1000 concentration of received energy in both
horizontal and vertical directions (a factor of 106 in power
intensity). This improved energy delivery efficiency allows
an optical link to operate at a lower transmit power and

Copyright (c) 2007 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

aperture size while still achieving a higher link data rate. For
all of these reasons and more, NASA plans to utilize higher
frequency regions in the electromagnetic spectrum to increase
the deep space information throughput from 256 Kbps (Mars
Exploration Rovers) to tens-of-Mbps and beyond.
Modulation and coding are keys to reliable communications.

In the case of an optical link with direct detection, for which
we consider, a modulation that has a high peak to average
ratio have been shown to be very efficient [1]. Pulse-position
modulation (PPM) is one scheme that offers high peak to
average power ratio. An M order PPM divides a symbol
interval into M possible pulse locations and only a signal
pulse is placed into one of these possible positions depending
on the information to be transmitted.
Moision and Hamkins compared various concatenated

modulation coding schemes with PPM that included Reed-
Solomon PPM (RS-PPM), Low-Density-Parity-Check PPM
(LDPC-PPM), and convolutional coded PPM. They discov-
ered that a serially concatenated pulse-position modulation
(SCPPM) scheme offers the best performance and complexity
tradeoff for deep space communications [2].
Modulation is a mapping of bits to symbols transmitted

on the channel. This mapping may be considered a code
and demodulation as decoding of the code. Conventionally,
the modulation and error-correcting code (ECC) are decoded
independently, with the demodulator sending its results to the
ECC decoder. However, we may consider the combination of
the modulation and the ECC as a single large code, which
maps user information bits directly to the symbols transmitted
on the channel. We could gain several dBs in performance
by decoding the ECC and modulation jointly as a single code
relative to decoding them independently. An exact maximum-
likelihood (ML) decoding of the joint modulation–ECC code
would, in most cases of practical interest, be prohibitively
complex. However, we may approximate true ML decoding
while limiting the decoder complexity by iteratively decoding
the modulation and the ECC. This is in fact the “turbo”
principle and more details can be found in [3].
Due to the unique structure of SCPPM, a straightforward

application of the standard turbo decoding algorithm would be
very inefficient. Existing works on turbo optimization, for ex-
ample that of [4], offer insights but cannot be directly applied
to the SCPPM design. Other codes, especially ones designed
for the optical channel, that have similar constructions might
face the same challenges in their decoding complexity and will
benefit from optimizations presented in this work.
This paper is organized as follows: in Section II, we give our
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channel assumptions. In Section III we describe the SCPPM
code construction and explain why application of classical
turbo decoding is not practical. In Section IV, we describe
the turbo-like part of the SCPPM decoding.
However, the decoder includes many new techniques that

optimize the decoding speed and performance. In Section V
we illustrate how to efficiently decode the inner accumulate
PPM (APPM) code in SCPPM.
In Section VI we present a hybrid “maxstar top 2” circuit

fit for pipelining and achieves a better performance than the
max-only approximation with only a small amount additional
logic.
In Section VII, we describe the SCPPM interleaver design.

The interleaver, characterized by a permutation polynomial,
produces a good decoder threshold and a low decoder error
floor. The interleaver also has an algorithmic realization that
does not require storing the interleaving and deinterleaving
mappings, thereby saving memory.
To increase the overall throughput, the SCPPM code trellis

can be partitioned into windows and parallel decoders can be
applied to the windows. In Section VIII, we provide a low-
latency cyclic redundancy check (CRC) circuit that works with
window-based decoders.
In Section IX we present various FPGA implementations

of the SCPPM decoder that include the featured optimizations
and show that SCPPM can operate within one dB of capacity
in a nominal deep space mission scenario. We demonstrate that
a 6.72 Mbps decoder can be realized on a single FPGA. In
addition, we outline a readily achievable path to implementing
a SCPPM decoder that can deliver 50 Mbps (enough to transfer
compressed high-definition television signals) and beyond for
deep space or satellite communications.

II. CHANNEL ASSUMPTIONS

We consider an optical communications system that uses
direct photon detection with a high-order pulse-position mod-
ulation (PPM) [5, Chapter 1.2]. An M -order PPM modulation
uses a time interval that is divided into M possible pulse
locations, but only a single pulse is placed into one of the
possible positions. The position of the pulse is determined by
the information to be transmitted. A diagram of the optical
communications system in discussion is shown in Fig. 1.
The information bits u = (u1, u2, · · · , uK) are independent
identically distributed (i.i.d.) binary random variables assumed
to take on the values 0 and 1 with equal probability. The
vector u is encoded to c = (c1, c2, · · · , cn), a vector of n PPM
symbols. The overall length in bits for a codeword block is
N = nlog2M .
At the receiver, light is focused on a detector that responds

to individual photons as illustrated in Fig. 2. For each photon
sensed, the detector produces a band-limited waveform for
input to the demodulator. This waveform is used to estimate
the photon count, ki, within each slot i. On the Poisson
channel, a nonsignaling slot has average photon count n b and
a signaling slot has average count ns+nb so that the likelihood
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ratio of slot i is calculated by

LR (ki) =
(ns + nb)ki e−(ns+nb)/ki!

nki
b e−nb/ki!

= e−ns

(
1 +

ns

nb

)ki

. (1)

More on the receiver design can be found in [6].

III. THE SERIALLY CONCATENATED PULSE-POSITION
MODULATION (SCPPM) CODE

The SCPPM encoder, shown in Fig. 3, consists of an outer
rate 1/2 constraint length 3 convolutional code, a polynomial
interleaver, and an inner accumulate PPM (APPM) code. A
block of K information bits u is cyclic redundancy check
(CRC) protected and encoded by the outer convolutional code
to yield a length N coded sequence x. This coded sequence
is permuted bit-wise to produce the sequence a that is then
filtered by an accumulator and mapped to n = N/log2M
PPM symbols c. There are log2M bits per PPM symbol. Due
to the APPM bits-to-symbol mapping, the trellis that describes
the inner code consists of 2 states and M/2 parallel branches
between connecting states. We cannot directly apply standard
turbo decoding and treat each of the parallel edges separately
because doing so would make pipelining difficult and increase
decoding latency.
The interleaver and deinterleaver are described by quadratic

polynomials and efficient designs are given in Section VII.
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IV. SCPPM DECODING
Decoding of the SCPPM code uses the turbo principle.

The decoding procedure also incorporates new techniques and
components that are not found in the standard turbo approach
to optimize hardware implementation. For completeness, we
discuss the conventional turbo techniques that are adopted by
SCPPM decoding in this Section.
However, efficient SCPPM decoding requires an inner PPM

decoder that handles parallel edges in the code trellis, a high-
speed algorithmic interleaver (de-interleaver) that works with
PPM symbols, and a multiple-bit input cyclic redundancy
check circuit (CRC) that works with a windowed decoder.
We could not find in existing literature techniques that deal
with these topics directly and therefore, we will present our
customized approach to each of these subjects in Sections V
through VIII.
A high level block diagram of the SCPPM decoder is illus-

trated in Fig. 4. The symbol I indicates input to the constituent
decoders and O indicates output. The inner decoder operates
on the modulation code and the outer decoder operates on the
convolutional code. Each code is described by a trellis. For
each trellis, the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm
[7] is used to compute the a-posteriori log-likelihood ratios
(LLRs) from a-priori LLRs by traversing the trellis in forward
and backward directions. Extrinsic information (the difference
between the a-posteriori and a-priori LLRs) is exchanged in
iteration rather than the a-posteriori LLRs to reduce undesired
feedback.

A. Log-Domain Decoding
Each decoder module in the SCPPM decoder applies the

BCJR algorithm to the trellis of the constituent code. We
use standard notations in the turbo decoding literature [8]
and simply restate the calculation of the branch and state
metrics inside the inner decoder module. To facilitate hardware
realization, the metric computations are done in the log-
domain [9], which translates multiplications into additions, and
is less sensitive to round-off errors in fixed-point arithmetic.
Let V be the set of states and E be the set of directed labeled

edges in a trellis. Each edge e ∈ E has an initial state i (e) and
a terminal state t (e) (see Fig. 5). For each edge e and stage
k of the inner code trellis, the BCJR algorithm traverses the
trellis in the backward direction to calculate the log branch
metric as

γ̄k(e) = pk(a; I) + pk(c; I). (2)

The term pk(c; I) is the PPM symbol LLR provided by the
channel given in (1) and the term pk(a; I) is the a-priori

Inner
Decoder

Π

Π−1

Outer 
DecoderFrom 

channel

p(a;O)

p(a; I)

p(x; I)

p(x;O)

p(u;O)

p(u; I) = 0

To CRC

p(c; I)

Fig. 4. The SCPPM decoder. Output bits can be directed to a cyclic
redundancy check (CRC) to validate codewords.

i(e) t(e)

sk−1 sk

e

Fig. 5. One stage of a trellis.

symbol LLR provided by the outer decoder. In the same trellis
pass, the BCJR algorithm calculates a backward state log
metric for each state s and stage k as

β̄k(s) = ln
∑

e:i(e)=s∈V

exp
(
β̄k+1(t(e)) + γ̄k+1(e)

)
. (3)

The algorithm then traverses the trellis in the forward direction
to calculate the ᾱ’s in the same way. The output LLRs are
a function of ᾱ’s, β̄’s and γ̄’s. The outer decoder operates
on the trellis that describes the outer code using the same
principle. This approach is also known as log maximum a-
posteriori (log-MAP) decoding [10].
The log sum of exponentials of (3) can be expressed as the

max of the exponents plus an adjustment term. This operation
is known as the maxstar function:

∗max (x, y) ! ln (ex + ey) = max (x, y)+ ln
(
1 + e−|x−y|

)
.

(4)
The adjustment term can be precomputed and stored in a
lookup table to reduce complexity at an increase in memory
usage [11]. We can also ignore the adjustment term entirely to
save on memory – this approach is known as max log-MAP
decoding. Some of the loss incurred from this approximation
can be recovered by scaling the extrinsic information that is
passed between the inner and outer decoder [12], [13]. We
will introduce a new technique that recovers even more of the
loss by adding only a small amount of logic in Section VI.

B. Simplifying Computations with Parallel Trellis Edges

The inner APPM code trellis has 2-states and 2M edges per
stage as seen in Fig. 6. The forward and backward recursions
on this trellis require taking the ∗max of M

2 edges per transi-
tion between two states. Suppose each 2-input ∗max operation
incurs a delay of one clock cycle. A direct implementation
of the forward-backward algorithm would require a delay of
log2 (M/2) cycles per transition between two states just for
the ∗max ’s. Barsoum and Moision [2], [14] showed that the
computation can be pipelined, reducing the M/2-input ∗max
operation to a 2-input ∗max operation that is computed in one
clock cycle.
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Handling of parallel edge transitions in a trellis is not
a new notion. However, we are not aware of any existing
literature on this topic that would apply directly to our SCPPM
code structure. Therefore, in Section V we illustrate how to
efficiently deal with the APPM inner code trellis.

C. Fast Modulo Normalization
The BCJR algorithm consists of traversing the code trellis

and updating a set of state and branch metrics. Due to the
recursive nature of the updates, each of the state metrics
in a stage is normalized and clipped by subtracting out the
maximum state metric of that stage. Because this update path
involves recursion, it cannot be pipelined and becomes the
critical path that limits the maximum clock rate at which our
design can run on the FPGA. Without normalization, the state
metrics can grow unbounded and eventually overflow in a
fixed-point hardware implementation. It has been shown for
the Viterbi algorithm [15] that as long as the quantization bit
width is sufficient to account for the maximum differences
between the states metrics, the metrics updates can be allowed
to overflow without affecting the result of the computations.
This approach naturally extends to the BCJR algorithm and is
applied to the SCPPM decoder [11], [16].

D. Partial Statistics
To reduce the channel likelihood storage requirements, we

may discard the majority of the channel likelihoods and use
partial statistics [17]. This may be accomplished by processing
only a subset consisting of the largest likelihoods during
each symbol duration–the likelihoods corresponding to the
PPM slots with the largest number of observed symbols. The
observation of the remaining slots is set to the mean of a noise
slot. In low background noise, a small subset may be chosen
with negligible loss.

E. A Window Approach to the Outer Decoder
We can partition a code trellis into distinct segments and

decode these segments in parallel, therefore increasing the
overall throughput.

Inner Decoder Outer Decoder Outer Decoder Outer Decoder

time to complete one codeword iteration

decoding time = 4 units

Inner Decoder Outer Dec. #1

time to complete one codeword iteration with parallel outer code windowing

Outer Dec. #2

Outer Dec. #3

decoding time = 2 units

By partitioning the outer code trellis 
into three and applying the BCJR 

algorithm to all three trellis segments 
in parallel the iteration time per 

codeword is reduced by half.

Fig. 7. Windowing increases throughput. For N = 15120 and 64 PPM,
outer trellis is three times as long as the inner trellis.

In iterative decoding, a cyclic redundancy check (CRC) is
often used as a stopping rule. While the concept of windowing
is not new [18], however, we have not seen in literature a de-
scription of an efficient CRC circuit that works with window-
based turbo decoders. A conventional CRC is implemented as
a linear feedback shift register (LFSR) circuit and takes bit-by-
bit input serially. In case of windowing, the decoder outputs
multiple bits per clock cycle, many stages apart, and these bits
must be buffered into a received word before input into a serial
CRC circuit. To remove the serial-input bottleneck and avoid
a buffering delay, we provide in Section VIII a CRC circuit
that can take as input multiple bits per clock cycle generated
by windowing.
The inner SCPPM trellis consists of n = N/log2M symbols

or segments. The codeword length N is selected to be 15120
bits and a practical PPM order M is 64. For this setting, the
inner trellis will have 2520 segments. The outer trellis is a
rate 1/2 code and therefore has N/2 or 7560 segments. We
can partition the outer code by three and apply window-based
BCJR to all three segments in parallel to obtain an overall
increase in throughput by a factor of two as seen in Fig. 7.

V. SIMPLIFYING COMPUTATIONS IN THE INNER APPM
DECODER

We work with the β̄ recursion. The ᾱ computation follow in
the same manner. In the product domain, it is straightforward
to see an application of the distributive law (multiplication
distribution over addition) saves computations on a trellis with
parallel edges:

βk(s) =
∑

e:i(e)=s

βk+1(t(e))γk+1(e)

=
∑

e:i(e)=s,t(e)=s

βk+1(s)γk+1(e)

+
∑

e:i(e)=s,t(e)=s̄

βk+1(s̄)γk+1(e)

=



βk+1(s)
∑

e:i(e)=s,t(e)=s

γk+1(e)
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+



βk+1(s̄)
∑

e:i(e)=s,t(e)=s̄

γk+1(e)





= βk+1(s)γ′

k+1(s, s) + βk+1(s̄)γ′

k+1(s, s̄) (5)

where γ ′

k+1(s, s), a sum over parallel edges, is referred to as
the Super Gamma for the state pair (s, s) at stage k + 1. The
same calculation can be made for the state pair (s, s̄).
We have an analogous simplification in the log domain via

the distributive law (addition distributive over ∗max ) which
can be seen by taking logarithms of both sides of (5)

β̄k(s) = ln
(
exp

(
β̄k+1(s) + γ̄′

k+1(s, s)
)

+ exp
(
β̄k+1(s̄) + γ̄′

k+1(s, s̄)
))

= ∗max s̃∈{s,s̄}{β̄k+1(s̃) + γ̄′

k+1(s, s̃)} (6)

where
γ̄′

k(s, s̃) = ∗max e:i(e)=s,t(e)=s̃ {γ̄k(e)} (7)

Since the γ̄ ′

ks are not a function of a recursively computed
quantity, they may be pre-computed via a pipeline as illustrated
in Fig. 8. The schedule for the Super γ calculations is shown in
Fig. 9. The pipeline is filled with the first log2M stages of γ’s.
The decoding BCJR algorithm then starts after the pipeline is
filled and thereafter, a set of Super γ values per trellis stage is
generated per clock. More on this topic can be found in [2].

VI. MAXSTAR ONLY THE TOP 2 ELEMENTS
Implementing the full log-MAP decoder consumes much

FPGA resources because each maxstar operation requires a

lookup table. For SCPPM, the number of tables required is
increased by the potentially high number of parallel edges
in the APPM code trellis. To reduce the FPGA resource
utilization, we can ignore the adjustment term in the maxstar
function and simply use the max operation. However, this
simplification, called max log-MAP decoding, comes with
a significant decoder performance loss. Wu and Pisuk [12]
showed that a confidence factor, which we denote as FF (0 <
FF < 1), can be used to weight the extrinsic Log Likelihood
Ratios (LLRs) that are passed between two iterative decoders
to recover some of the loss incurred from the max log-MAP
approach. To recover yet more of the loss, we consider a hybrid
approach that takes the maxstar of the top 2 elements in the
input array to further reduce the gap between log-MAP and
max log-MAP decoding.

A. The Algorithm

Given an array of n elements x = (x1, x2, · · · , xn), one
method of finding the maxstar of the top 2 elements consists
of sorting the array. To do this, one can simply assign two
variables top and top2 to x1 and x2, then compare the rest
of the elements in x with first top and then top2. If the
compared element is greater than top, we replace top2 with
top and top with the element. If the compared element is
greater than top2 only, we replace top2 with the element.
This procedure is of complexity O (n) and at its completion
the two variables will contain the top 2 elements of x and
we perform a ∗max (top, top2) to obtain the desired result.
This method would not be efficient to realize in hardware
as it requires a state machine, takes n clocks for each array,
and cannot be pipelined. We thus develop a “maxstar top 2”
algorithm that can be implemented recursively and does not
require significant additional circuitry relative to simply taking
the max.
The idea is to build from the “max only” pipeline that finds

the top element in x. The base case reduces to taking the max
of two elements, xi and xj , where both i, j ∈ {1, · · · , n}.
Instead of propagating only the max of the two elements
after each compare, we also feed forward their difference
∆i,j = |xi − xj |. In this way, at every stage of the pipeline, we
would then be able to maintain not only the current maximum
element but also its difference with the next largest element
compared so far in the pipe.
Our “maxstar top 2” algorithm takes in 4 inputs and

produces two outputs. The inputs are two elements to be
compared, xi and xj and the difference between each and their
next largest element in the previous stage ∆i,i′ and ∆j,j′ .

B. The Circuit

The circuit for the two element “maxstar top 2” is given in
Fig. 10. The two inputs are denoted here as A and B. Without
loss of generality, assume A > B. We only need to consider
two cases to see how the circuit works. The output of the top
multiplexer (mux) will be A and the lower mux will select δA.
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Case 1: δA > |A − B|: We state that δA is the difference
between A and its previous compare, denoted here as A ′.
Substituting for δA we have |A − A′| > |A − B| and we can
strip the absolute values because A is the largest of the three
so A−A′ > A− B and A′ < B. The element B is closer to
A and we output |A − B| in the final mux.
Case 2: δA ≤ |A − B|: We have here |A − A′| ≤ |A − B|.

Stripping the absolute values and rearranging the terms we get
A′ ≥ B. The element A′ is closer to A than B and we output
δA in the final mux.
We can inductively see that in the base case with a 2 element

input, the “maxstar top 2” circuit outputs the maximum
element and the difference between the maximum and the next
largest element in previous compares. We can simply replace
the maxstar circuit in the pipeline of Fig. 8 with “maxstar
top 2” to find the largest element and the difference between
the largest and the second largest in all stages before the last.
And we use a maxstar circuit in the last stage to calculate the
maxstar of the top 2 elements in an array as illustrated in Fig.
11. This approach can be extended to the maxstar of the top
4 elements and so on. The performance of “maxstar top 2” is
benchmarked in Section IX.

VII. AN ALGORITHMIC POLYNOMIAL INTERLEAVER
The interleaver design can affect the decoder threshold

and error floor. Choosing a random interleaver permutation
will generally lead to a desirable threshold and the key to
interleaver design becomes finding a permutation that will
also lead to a low error floor. The SCPPM interleaver is
characterized by a second order polynomial f (j) = κj + &j 2.
We use choice selections of the parameters κ and & to generate
a permutation polynomial that not only exhibits a low error
floor but also possesses a simple hardware implementation
[19]. Comparison of the SCPPM polynomial interleaver versus
the σ-random interleaver [20] is given in Section IX-E.
The interleaver input bit position f (j) mod N is mapped

to output bit position j, i.e.,

xf(j) = aj , xi = af−1(i).

We show that mapping for the (j + i)th interleaver position
can be expressed as a function of the current interleaver
position j:

[f (j + i)]N =
[
κ (j + i) + & (j + i)2

]

N

=
[(
κj + &j2

)
+ (2i&j + i (κ + &i))

]
N

= [f (j) + g (i, j)]N (8)

where
g (i, j) = 2i&j + i (κ + &i) (9)

and [·]N is the “mod N” operation.
In our design, we assign N = 15120 = 24 · 33 · 5 · 7.

Candidate interleavers for this N are of the form f (j) =
κj + 210λj2 [19], [21], where λ is a positive integer and κ
does not have 2, 3, 5 or 7 as a factor. Among this class we have
observed good performance with the polynomial f (j) = 11j+
210j2. An inverse polynomial is calculated in [2] and given
as f−1 (i) = 7331i + 7770i2. We use the inverse polynomial
to implement the deinterleaver.

A. Interleaver Partitioning for One Clock Read/Write Access
For an M -order PPM modulation, the inner decoder pro-

cesses a PPM symbol (or log2M bit LLRs) per trellis stage.
A straightforward scheduling would be to read one LLR from
the interleaver memory per clock. This approach incurs a
long latency because the inner decoder would have to wait
log2M clocks before proceeding to the next stage. To make
interleaving more efficient, we design an approach that allows
one clock read/write access. This approach also applies to the
deinterleaver.
We illustrate our idea using the M = 64 SCPPM decoder

with N = 15120. The interleaver memory is partitioned
into log264 = 6 memory modules. This implementation
can be easily adapted for codes with other PPM orders and
parameters.
Each module is implemented using Xilinx dual-ported block

random access memory (BRAM) as shown in Fig. 12. The
input position into the inner decoder j is determined from the
output position f (j) of the outer decoder, that is PaI [j] ⇐
PxO [[f (j)]N ]. At each clock, the outer decoder produces two
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Fig. 12. Interleaver implementation. Permuted addresses can be obtained
from a lookup table or computed on-the-fly.

LLRs and these are written in permuted order into the BRAMs
simultaneously. The address permutation to memory location
mapping for the interleaver is given in Table I. The first
column consists of the output position [f (j)]N of the outer
decoder in sequential order. The second column consists of
the corresponding input position j into the inner decoder. The
third column and fourth column are the memory module index
(j mod 6) and address (&j/6') in which the corresponding
outer decoder output position is stored. The fifth column
indicates the trellis stage and the sixth column marks the BCJR
window number (for the window-based SCPPM decoder). For
example, the 221st LLR, starting from zero, produced by the
outer decoder corresponds to the first LLR input for the inner
decoder. This LLR is stored in address zero of memory module
one. This LLR is calculated at the 110th outer code trellis stage
(0-7559) and belongs to the zeroth window segment (out of
three).
The outer decoder writes to the interleaver BRAMs in

permuted order using the mapping of Table I. As we march
down the table entries, we see that there will be no write
conflicts at any time because the period of memory module
writes is six and only two LLRs are produced by the outer
decoder each clock. During interleaver reads, the inner decoder
accesses the BRAM entries in sequential order. That is, at the
first clock, the inner decoder reads the first entry (address 0)
of each of the six memory modules and increases the address
pointers by one. The six LLRs read correspond to PaI[0]
through PaI[5] and are highlighted by bold face fonts in Table
I. At the next clock, the inner decoder reads the second entry
(address 1) of each memory module and again updates the
address pointer. These six LLRs read correspond to PaI[6]
through PaI[11] and so on.
The deinterleaver is implemented as one big chunk of

memory as illustrated in Fig. 13. The output LLRs generated
by the inner decoder is written sequentially six at a time into
“one row” of the dual-ported BRAM. The outer decoder then

Dual-ported 
BRAM

6 LLRs

6 LLRs 1 LLR

1 LLR

select from
permuted address table

6 LLRs per row

6 LLRs

Write Sequentially

From inner decoder

Permuted
addresses
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To
outer

deoder

To
outer

decoder

!"#$%&

!"#$%'

#"()

*"+,-.)
/ 0 1 2 3 4

/
0 !56

!56

!78

Fig. 13. Deinterleaver implementation. Permuted addresses can be obtained
from a lookup table or computed on-the-fly.

reads the LLRs in permuted order two at a time from the
deinterleaver. The address permutation table for the deinter-
leaver is the same as that of the interleaver given in Table I,
with the exception that the header corresponds to that of the
second row. For example, PxI[862], the 862nd LLR (starting
from zero) input to the outer decoder should be read from the
second column zeroth row of the deinterleaver BRAM. The
control logic reads the desired two rows and then selects the
correct entry out of each row. One can see from the table that
there are no read conflicts.
With the above interleaver and deinterleaver design, the

LLRs produced or required by a stage of trellis decoding can
be written to or read from memory in one clock cycle.

B. Removing the Need to Store Interleaver Mappings
We can avoid the need to store Table I in memory by

computing the memory module and address for a specific
interleaved position on-the-fly. The interleaver is partitioned
into C = log2 M distinct memory blocks each with n =
N
C entries for fast read and write access. Each interleaver
position [f (j)]N , for j = [0, 1, · · · , N − 1], is mapped to a
corresponding index pair

(
rf(j), qf(j)

)
where rf(j) ! [f (j)]C

is the index into one of the C memory modules and q f(j) =[⌊
f(j)
C

⌋]

n
is the index into one of the n address entries in each

module. Each stage of the inner APPM decoding produces
C LLRs. Because the modulo and division operations are
costly to implement in hardware, we describe a procedure
that calculates the interleaver indexing pair for the set of C
LLRs desired by the current stage based on the set of C
indexing pairs computed in the previous stage. We begin with
a proposition.
Proposition 1: If C | N , then [[f (j)]N ]C is equivalent to

[f (j)]C
Proof: A nonnegative number f modulo C can be ob-

tained by continuously subtracting C from f until f becomes
less than C. If C | N , the number f moduloN can be obtained
by subtracting n = N

C multiples of C from f . Therefore,
[[f (j)]N ]C is equivalent to [f (j)]C .
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xf(j): f (j) aj : j module addr stage window
xi: i af−1(i): f−1 (i) column row stage window
0 0 0 0 0 0
1 15101 5 2516 0 0
2 382 4 63 1 0
3 1203 3 200 1 0
4 2444 2 407 2 0
5 4105 1 684 2 0
...

...
...

...
...

...
221 1 1 0 110 0
...

...
...

...
...

...
862 2 2 0 431 0
...

...
...

...
...

...
5040 10080 0 1680 2520 1
5041 10061 5 1676 2520 1
...

...
...

...
...

...
10080 5040 0 840 5040 2
10081 5021 5 836 5040 2
...

...
...

...
...

...
15119 439 1 73 7559 2

TABLE I
ADDRESS PERMUTATION TABLE FOR THE INTERLEAVER (TOP HEADER) AND DEINTERLEAVER (BOTTOM HEADER).

1) Step 1: Initialization: We assign the constant ∆q =
[2C&]n and set the initial modulus values using (8) an (9)
to

rf(0) = [f (0)]C , · · · , rf(C−1) = [f (C − 1)]C , (10)

rg(0) = [g (C, 0)]C , · · · , rg(C−1) = [g (C, C − 1)]C , (11)

as well as the initial quotient values

qf(0) =
[⌊

f (0)
C

⌋]

n

, · · · , qf(C−1) =
[⌊

f (C − 1)
C

⌋]

n

, (12)

qg(0) =
[⌊

g (C, 0)
C

⌋]

n

, · · · , qg(C−1) =
[⌊

g (C, C − 1)
C

⌋]

n

.

(13)
2) Step 2: Loop for stage = 1 : n − 1 and i = 0 : C −

1: Note that each i update is implemented by an individual
circuit. Therefore, we have C circuits working in parallel, each
calculating the interleaver indexing pair for each of the C
LLRs needed by decoding of the inner code. First, we expand

g (C, i + C) = 2c& (i + C) + C (κ + &C)
= g (C, i) + 2C2& (14)

and define g (l) ! g (C, l). Using this definition, (8), and (14)
together, we update the modulus as

rf(stage·C+i) = [f ((stage − 1) · C + i + C)]C
= [f ((stage − 1) · C + i)

+g ((stage− 1) · C + i)]C
= rf((stage−1)C+i) (15)

because for all stages

rg(stage·C+i) =
[
g ((stage− 1) · C + i) + 2C2&

]
C

= 0. (16)

We express the functions

f ((stage − 1) · C + i) = qfC + rf (17)

and
g ((stage− 1) · C + i) = qgC + rg. (18)

We follow by updating the quotient for f as

qf(stage·C+i) =
[⌊

qfC + rf + qgC + rg

C

⌋]

n

=
[
qf + qg +

⌊
rf + rg

C

⌋]

n

=
[
qf((stage−1)C+i) + qg((stage−1)C+i)

]
n
(19)

because from (15) rf < C and from (16) rg = 0. We can then
update the quotient for g as

qg(stage·C+i) =
[⌊

g ((stage− 1) · C + i) + 2C2&

C

⌋]

n

=
[⌊

qgC + rg

C

⌋
+ 2C&

]

n

=
[
qg((stage−1)·C+i) + ∆q

]
n

. (20)

The memory module for the interleaver position
f (stage · C + i) is then rf(stage·C+i) and the address
entry is qf(stage·C+i).

C. Circuit Description for the Algorithmic Interleaver
The derivations of equations (15) and (16) indicate that the

memory module index for each LLR and each stage stays
the same throughout the trellis. Plugging in parameters to the
initial values of (10) will show that the memory module indices
per trellis stage has a period C. This observation is confirmed
by Table I. In the table, the memory module indices take on
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Fig. 14. A circuit that computes the address into the memory module for the
ith LLR in each stage, where i = [0, · · · , C − 1]. There will be C instances
of this circuit one for each LLR.

the values [0, C − 1, C − 2, · · · , 2, 1] for every stage and this
pattern repeats for all stages. Consequently, we only need to
calculate the address entry for each LLR in each stage. A
circuit that implements equations (19) and (20) to compute
the address entry per LLR per trellis stage is given in Fig. 14.
Note that there will be C such circuits one for each LLR per
stage working in parallel.
This algorithmic interleaver removes the need to store Table

I. Implementation only requires a small number of gates.
This memory saving benefit is even more evident in multiple
decoder instantiations on one FPGA because many copies of
the same Table need not be stored. We characterize logic and
memory tradeoff number for our SCPPM decoder in Section
IX-A.

VIII. A LOW-LATENCY CRC
A straightforward hardware implementation of a cyclic

redundancy check (CRC) is a linear feedback shift register
(LFSR). A block of information bits with the associated CRC
check bits are shifted into the LFSR circuit one bit at a time.
After the entire block is input to the circuit, the state of the
registers indicates whether the CRC is verified. A CRC can be
used together with iterative turbo decoding to flag codeword
errors or to stop decoding iterations.
To increase the throughput of turbo decoding, the code

trellis can be partitioned into distinct windows and multiple
decoders can be applied to these windowed trellis segments
in parallel. Doing so will generate multiple decoded bits per
clock and these bits must be buffered into a received word
before running the serial CRC circuit. To avoid this buffering
delay, we propose a low-latency CRC circuit that can handle
multiple-bit inputs per clock.

A. Polynomial Description of CRCs
Let us write a length k binary message block m =

(mk−1, mk−2, · · · , m0), that is to be protected by a CRC, in

polynomial form:

m (x) = mk−1x
k−1 + mk−2x

k−2 + · · · + m0 (21)

Let the length n CRC protected codeword be c =
(cn−1, cn−2, · · · , c0) or

c (x) = cn−1x
n−1 + cn−2x

n−2 + · · · + c0 (22)

and the CRC generator be

g (x) = gn−kxn−k + · · · + g0. (23)

The CRC polynomial r (x) is calculated by first shifting the
message polynomial left by n−k positions and then by taking
the modulo g (x) operation

r (x) = Rg(x)

[
m (x) · xn−k

]
, (24)

where deg [r (x)] < n − k. The codeword block can also be
written as

c = [m, 0, · · · , 0] ⊕ r

=

[
mk−1, · · · , m0, 0, · · · , 0︸ ︷︷ ︸

n − k

]

⊕ [rn−k−1, · · · , r0] (25)

(⊕ is the binary XOR operations) or

c (x) = m (x) · xn−k + r (x) . (26)

To verify the CRC of a codeword block ĉ (x) = c (x) +
e (x) that may be corrupted by an error polynomial e (x), we
calculate

Rg(x) [ĉ (x)] = Rg(x)

[
m (x) · xn−k + r (x) + e (x)

]

= Rg(x)

[
Rg(x)

[
m (x) · xn−k

]
+ Rg(x) [r (x)]

+Rg(x) [e (x)]
]

= r (x) + r (x) + Rg(x) [e (x)]
= Rg(x) [e (x)] . (27)

Therefore, if the remainder is zero, the CRC passes and the
error polynomial is zero. If the remainder is nonzero, then
the codeword is corrupted. Note that we won’t be able to
construct the error polynomial e (x) from the CRC remainder
Rg(x) [e (x)].

B. Hardware Description of CRC checks

A CRC is simply a modulo operation and can be imple-
mented by a linear feedback shift register (LFSR) for dividing
polynomials. The circuit for multiplying by a polynomial
h (x) and dividing by a polynomial g (x), each with degree
up to &, is given in Fig. 15. For division only, simply set
h (x) = 1 (h0 = 1, every other coefficients to 0). After the
entire codeword is shifted into the circuit, the quotient of the
division operation is given by the bits that are shifted out and
the remainder is given by the register state. More information
on LFSRs can be found in [22, Linear Switching Circuits].
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Fig. 15. A circuit for multiplying by h (x) and dividing by g (x).
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to CRCto CRC to CRC

Fig. 16. A trellis windowed by three leads to three simultaneous decoded
bit streams.

C. CRC Circuit for Windowed-Based Turbo Decoding
In windowed-based turbo decoding, the output bit streams

to be fed into the CRC are generated in parallel as seen in
Fig. 16. We describe how a CRC circuit can be modified to
handle this parallelism. Let the code trellis be partitioned into
j distinct windows. The codeword polynomial can be written
as

c (x) = c1 (x)xs1 + c2 (x) xs2 + · · · + cj (x) . (28)

We can then write the check polynomial as

Rg(x) [c (x)] = Rg(x) [c1 (x) xs1 + c2 (x) xs2 + · · · + cj (x)]
= Rg(x)

[
Rg(x) [c1 (x) xs1 ] + Rg(x) [c2 (x)xs2 ]

+ · · · + Rg(x) [cj (x)]
]

= Rg(x)

[
Rg(x) [c1 (x) κ1 (x)] (29)

+Rg(x) [c2 (x)κ2 (x)] + · · · + Rg(x) [cj (x)]
]
,

where κi = Rg(x) [xsi ], i = 1, 2, · · · , j − 1, and each κi (x)
can be pre-calculated. The CRC LFSR circuit for the window-
based decoder will consist of both feed-forward and feedback
tap connections. The feed-forward taps are given by the XOR
of κi (x)’s and the feedback taps are given by the generator
g (x).

D. A CRC Circuit for the Window-Based SCPPM Decoder
A practical realization of the SCPPM code scheme is to use

PPM order 64. The SCPPM decoder in our implementation is
windowed by three, as detailed in Section IV-E, to double the
overall throughput. With the outer code trellis having 7560
stages, each windowed by three segment has 2520 stages. We
use a 22-bit CRC with generator g (x) = x22+x5+x4+x3+1
to check the output of the windowed SCPPM decoder. The
CRC indicates whether a correct codeword decision is reached
and can be used to stop the iteration process. Using techniques

presented in this section, we precompute the polynomials
κ1 (x) = Rg(x)

[
x5040

]
and κ2 (x) = Rg(x)

[
x2520

]
and gener-

ate three circuits (shown in Fig. 17) to check the output bit
stream of each window. We can optimize and consolidate the
three circuits into one by XORing the three output bit streams
according to the feed-forward taps before input to the CRC
circuit.

IX. DECODER RESULTS
The SCPPM decoder for PPM order M = 64 is currently

implemented on a Xilinx Virtex II-8000 FPGA part, speed
grade 4 (XC2V8000-4), which sits on a Nallatech BenDATA-
WS board. The memory requirement is reduced by taking only
the top 8 channel LLRs as decoder input. The channel LLRs
input to the decoder are quantized to 8-bits, 5 for dynamic
range and 3 for precision.
We have implemented three versions of the decoder. The

first is the log-MAP decoder with normalization and clipping
circuits for the state metrics. The backward recursion state
metrics β̄’s are clipped to 8 bits before being stored into
RAMs. The forward recursion state metrics ᾱ’s are calculated
as needed and not stored. The remaining variables in the data
path are allowed to grow and not stored.
The second is the max log-MAP decoder with modulo

normalization. The β̄’s are allowed to grow in dynamic range
up to 16-bits (plus a 3-bit precision for a total of 19-bits)
before being stored into RAMs. Again, the ᾱ’s are calculated
as needed and not stored. All other metrics are allowed to
grow in width and not stored.
The third is the window-based max log-MAP decoder. The

outer code trellis is partitioned into three.
We only had the opportunity to complete place and route

for a fourth variation of the decoder, the “maxstar top 2”
implementation, and did not get a chance to finish the wrapper
around the decoder. But we did produce a bit-exact software
of the “maxstar top 2” decoder and used it to generate accurate
simulation results.

A. Resource Utilization
The FPGA utilization report for all decoder implementations

is given in Table II. Each decoder implementation has two
rows of utilization numbers in percentages. The first row
reports the slices (or logic) utilization. The second row reports
the BRAM utilization. Each utilization is then further broken
down into inner (decoder), outer (decoder), and miscellaneous
components. The sum of the components equals to the total.
Only percentages are given and the actual number of logic
slices and BRAM blocks can be computed from the Xilinx
Virtex II-8000 specification. For this part, the FPGA has 46592
logic slices and 168 BRAM blocks. Miscellaneous blocks are
modules external to the decoder that consume resources such
as circuitries and buffers for the FPGA interface. The channel
symbol memory and state metric storage are all implemented
using Xilinx internal dual-ported block RAMs (BRAMs) for
all decoders.
The ∗max lookup tables (LUTs) for the log-MAP decoder

are realized as simple multiplexers with hard coded inputs
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κ1(x) = 1 + x + x2 + x3 + x5 + x10 + x11 + x12 + x13 + x14 + x15

output

Outer Decoder #1

output

κ2(x) = 1 + x + x3 + x5 + x6 + x10 + x12 + x13 + x14 + x16 + x21

output
κ3(x) = 1

Outer Decoder #2

Outer Decoder #3

g(x) = 1 + x3 + x4 + x5 + x22

Fig. 17. CRC circuits for the polynomial g (x) = x22 + x5 + x4 + x3 + 1 and the SCPPM windowed by three decoder.

that function like read-only memories (ROMs). The log-MAP
decoder also allocated logic to normalization and clipping.
We can tradeoff resource and performance by removing the
LUTs and the clipping circuits. The max log-MAP decoder
avoids LUTs and uses modulo normalization to reduce the
logic utilization from 64% to 42% at a performance cost
of 0.2 dB. Moreover, we can compromise between resource
and performance by using the hybrid maxstar top 2 log-MAP
decoder. The logic utilization for this approach is 54%, just
half way between the 64% of log-MAP and 42% of max log-
MAP. The performance cost is also half way in between at 0.1
dB.
In the log-MAP decoder we store the interleaver mappings

of Table I as LUTs on BRAMs. For the max log-MAP version,
we avoid storing the interleaver mapping in BRAM and use the
algorithmic approach. This allows us to compare the memory
savings in going to an algorithmic interleaver. The synthesis
tool reports a savings of 453 Kb in BRAM memory which is
15% of the 3.02 Mb total on the Virtex-II 8000. The cost in
logic to implement the algorithmic interleaver is reported as
only 40 out of 46592 slices.
We also provide the report for window-based max log-MAP

decoder. As expected, windowing the inner code trellis by
three and operating three parallel outer decoder increases the
outer decoder logic percentage from 5% to 15%. However, this
implementation increases the throughput by a factor of two.
The maximum clock rate and throughput based on 7 average
iterations for all decoder designs are given in Table III.

B. Error Rate Performance
The decoder performance is shown in Fig. 18. The frame

loss rate (FLR) is plotted versus ns the average signal photons

per pulse slot in dB. Each frame is a codeword of k = 7560
information bits. A frame loss is declared when the decoder
decision could not converge to the correct codeword in the
maximum number of allowed iterations which is set at 32.
Out of the 7560 bits, 2 bits are used to terminate the trellis
and 22 bits are used for CRC. The CRC polynomial is x22 +
x5 +x4 +x3 +1 and has an undetected word error probability
of approximately 7 · 2−22 = 1.67× 10−6 assuming 7 average
iterations. To reduce the overall undetected word error rate,
the decoder runs a minimum number of iterations first before
validating the CRC. In doing so, the undetected word error
probability is lowered to roughly the product of the frame
loss rate and 1.67 × 10−6, a very small value.
We make the following observations in the performance

plot. Fixed-point implementation (circle-line) has a 0.1 dB loss
compared to the floating-point decoder (dashed-line). Clipping
and and normalization of the state metrics led to a floor
at 10−5. Max log-MAP decoder (square-line) has a 0.6 dB
loss compared to log-MAP decoding (circle-line). Max log-
MAP decoder with a scaling of the extrinsic information by
0.5 (diamond-line) recovers 0.4 dB out of the 0.6 dB lost.
Note that only the extrinsic information at the output of the
inner decoder is scaled by a factor between 0 and 1. The
extrinsic information at the output of the outer decoder is
untouched. The clipping and normalization floor is lowered
by using modulo arithmetic.
Also notice that using the “maxstar top 2” (triangle-line)

circuit in the inner decoder, the log-MAP outer decoder, and
a scaling of inner decoder extrinsic information by 0.625, we
are able to recover another 0.075 dB in signal energy. A 0.5
scale factor can be implemented in hardware by simply a right
shift by 1. A scaling of 0.625 is the sum of a right shift by 1
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Decoder Type Percent Slices Used Percentage Breakdowns for
Percent BRAM Used Inner Outer Miscellaneous

log-MAP 64% 52% 6% 6%
60% 19% 9% 32%

max log-MAP 42% 31% 5% 6%
51% 19% 9% 23%

window-based 53% 32% 15% 6%
max log-MAP 80% 19% 30% 31%
hybrid maxstar 54% 43% 5% 6%
top 2 log-MAP 51% 19% 9% 23%

TABLE II
COMPARING THE DIFFERENT SCPPM DECODER IMPLEMENTATIONS ON THE VIRTEX-II 8000 FPGA. THIS FPGA HAS A TOTAL OF 46592 LOGIC SLICES

AND 168 BRAM BLOCKS.

log-MAP max log-MAP window-based max log-MAP hybrid maxstar top 2 log-MAP
Maximum Clock 23 MHz 63 MHz 63 MHz 63 MHz
Throughput 1.23 Mbps 3.36 Mbps 6.72 Mbps 3.36 Mbps

TABLE III
MAXIMUM CLOCK RATE AND THROUGHPUT FOR THE DIFFERENT SCPPM DECODER DESIGNS ON THE XILINX VIRTEX-II 8000 FGA.
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Fig. 18. SCPPM decoder performance on the Poisson channel under a
nominal deep-space mission scenario.

and right shift by 3.

C. End-to-End Demonstration
We have successfully demonstrated [23] an end-to-end

SCPPM optical communications system as shown in Fig. 19.
We are able to deliver quality MPEG-2 video from a camera to
a display using this setup. The transmitter employs a 1064 nm
wavelength (Nd: YAG) solid state laser to modulate a stream
of SCPPM encoded symbols. The PPM pulses are then sent
over a fiber optic channel. At the receiving end, a Hybrid
Photo-Multiplier Tube (HPMT) photon counting detector is
used and the receiver assembly converts the photon counts into
LLRs for our FPGA decoder. The results of the experimental
runs at various operating points are plotted in Fig. 20. There

Fig. 19. An end-to-end SCPPM optical link demonstration.

are two experimental runs, one at 4 Mbps and the other at
6 Mbps both use only the top 8 statistics and a maximum
of 7 iterations. These two curves are compared to a curve
generated by using a software simulated Poisson channel and
the stand-alone FPGA decoder. We see that the experimental
curves match very closely to the stand-alone FPGA result. The
end-to-end performs within 1.5 dB of channel capacity. At a
frame loss rate of 10−5 the number of signal photons per pulse
slot is 2.67 and this corresponds to 3/2.67=1.12 information
bits per photon.

D. Performance Comparison vs. Reed-Solomon-PPM scheme
A legacy ECC used in many previous and current NASA

missions is the Reed-Solomon code. In Fig. 21 we compare
the Reed-Solomon PPM (RS-PPM) coded scheme versus the
SCPPM coded scheme and show that in a nominal mission sce-
nario, SCPPM out performs RS-PPM by 3 dB. The results are
generated using software simulation. To match the code rates
we use the SCPPM code parameters (N, K) = (16398, 8199)
and the RS-PPM code parameters (4085, 2047). We choose 64
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Fig. 20. End-to-end system performance. A frame is equivalent to a codeword
of 7560 information bits.

PPM as a reasonable order and an average background count
of 0.2 photons per slot.

E. Performance Comparison of Different Interleavers
The interleaver design affects the error rate performance

and error floor of SCPPM. Through simulation, we show that
the SCPPM algorithmic polynomial interleaver performs as
well as a σ-random interleaver and has no observable error
floor. The error rate curves are plotted in Fig. 22. We see that
for both the word error rate (WER) and bit error rate (BER)
the two interleavers produced almost identical decoder perfor-
mance. For deep space missions, where minimum WER floor
requirements are generally that of 10−4, the two interleavers
meet the specifications.

F. Path to 50 Mbps and Beyond
We achieved a 6.72 Mbps decoder on a single Xilinx Virtex-

II FPGA. Currently, Xilinx has available the Virtex-II Pro
FPGA part that is manufactured with a smaller micron-process
and features more BRAMs. We have completed a place and
route of our fastest design on the Virtex-II Pro. Results indicate
that the SCPPM decoder can deliver 8 Mbps at 7 average
iterations. We can add another stage of parallelism to our
design so that the inner decoder and outer decoder can work
on two codewords simultaneously and are not idle at any
time. Doing so doubles our throughput to 16 Mbps per FPGA.
Moreover, we can realize multiple instances of our decoder on
the Nallatech BenNuey-4E PCI board that has slots for three
daughters each capable of hosting two Virtex-II Pro FPGAs.
This migration path leads to a 96 Mbps SCPPM decoder that
is fit for deep space optical communications. We can further
increase the throughput to hundreds of mega-bits and beyond
by implementing a lower order SCPPM decoder, such as 16-
PPM, for terrestrial applications where a smaller PPM order
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Fig. 21. Comparison of SCPPM versus RS-PPM under a nominal deep space
mission scenario.
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Fig. 22. Comparison of the SCPPM polynomial interleaver versus the σ-
random interleaver.

actually achieves higher capacity due to the shorter distance
between the transmitter and receiver.

X. CONCLUSION

The serially concatenated pulse-position modulation
(SCPPM) capacity approaching code is designed by NASA
to support deep space optical communications at mega-bits-
per-second (Mbps) and beyond. The non-binary property
of SCPPM makes direct application of conventional turbo
decoding very inefficient. In this work, we introduced new
techniques that optimize the overall decoder throughput
and performance: a simplified Super Gamma to handle the
unique inner accumulate PPM code structure, a pipeline
friendly “maxstar top 2” circuit that reduces the max-only
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approximation penalty, a low-latency CRC circuit that works
with window-based decoders, and a rapid access algorithmic
interleaver that can compute the permutation mappings
on-the-fly.
To convey the efficacy of our techniques, we implemented

three variations of the SCPPM decoder on a Xilinx Virtex-II
8000 FPGA and summarized their tradeoffs. Through hard-
ware simulation we demonstrated that a single instance of our
SCPPM decoder can generate information bits at more than
6.72 Mbps and that the code design can perform within one dB
of capacity under nominal mission conditions. We believe that
our hardware optimizations are applicable to other non-binary
modulation and code schemes that are characterized by a high
peak to average power ratio designed to fit the requirements
of long distance optical communications.
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